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Abstract Strategic management of water resources in drought-vulnerable regions can be

greatly hampered by frequent, severe and long-lasting droughts. To enable better drought

relief policy and amicable solutions and proactive actions for preparedness and mitigation

of drought impacts, this study adopts a spatio-temporal methodology for the assessment of

drought risk of drought-prone areas in south-east Queensland, Australia. In this study, the

spatially representative depiction of the drought risk in a drought-prone region with

multiple vulnerability, exposure and drought hazard indicators is considered in order to

develop a geographic information systems-based drought risk mapping tool. Spatial

indicators of drought are categorised into various subclasses, and the conditional joint

probability of each indicator is the determined in accordance with the Bayes theorem. The

fuzzy logic approach is then embraced as a new approach in this study to standardise the

different drought factors on a range of 0–1 followed by an aggregation of drought vul-

nerability, exposure and hazard indices using the fuzzy GAMMA overlay operation in

ArcGIS 10.5 to produce the optimal drought risk map for the case study region. The

analysis of drought’s different phases shows varying vulnerability levels in different austral

seasons (summer, autumn and spring of 2007) and annually (2007, 2009 and 2013) that is

well represented by drought hazard index, i.e. rainfall departure. The application of the

fuzzy set to incorporate and classify drought factors reveals its useful implications for

handling of spatial drought-related data and the development of the drought risk index. The

validation of the method performed with upper and lower layer soil moisture data reveals

significant correlation with the drought risk index. The study has implications for drought

risk mapping, particularly in utilising the ability of the fuzzy logic-based analytical

technique integrated with GIS-based mapping tools for spatio-temporal drought risk
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studies. The approach in this paper can be considered as a practical mapping tool for

drought studies, to better enable drought management, drought mitigation and relief-

planning actions that need to be implemented by different decision-makers in water

resources, agriculture and other socio-economic areas.

Keywords Drought risk � Hazard/exposure/vulnerability index � Fuzzy

logic � Geographic information system (GIS)

1 Introduction

Drought is a socio-environmental phenomenon where climatic, hydrological, environ-

mental, socio-economic and cultural forces act concomitantly (Kallis 2008) to have an

effect on the severity. The need for interdisciplinary analysis of drought events and col-

lective assessments with the participation of stakeholders, scientists, policy makers and

public is crucial to provide effective, useful and new information for understanding and

managing drought events. A proactive risk management attempts for more concerted

efforts towards planning for drought events, which are no doubt dependent on drought

vulnerability assessments (Ekrami et al. 2016; Jain et al. 2015; Pandey et al. 2010; Thomas

et al. 2016; Wilhelmi and Wilhite 2002).

While a number of studies have focussed on modelling and characterisation of drought

in terms of severity, intensity and duration (Dayal et al. 2016, 2017a, b; Deo et al.

2016, 2017; Deo and Şahin 2015), the temporal and spatial assessment in terms of mapping

drought risk has remained very limited. A recent study by Zarafshani et al. (2016)

described a number of ways to map vulnerability with multiple hazards via a conceptual

framework, targeted at farmers’ level of perception for before, during and after the drought

onset. Their study suggests that the drought risk must be mapped on both temporal and

spatial scales (and consider the interacting factors) for any given region.

Drought risk is a product of the exposure to the hazard and the vulnerability to the

hazardous conditions (Wilhite 2000). An area is expected to have greater risk if it has a

high exposure and a low coping capability for the impact of drought. The vulnerability,

however, is likely to elevate over time with an increased demand for water resources. The

climatic events or other static or semi-static factors such as technology, population

behaviour, practices and policies may also vary albeit over longer-term scales, making the

drought vulnerability assessment a highly challenging task. Hence, the continuous

assessment of a drought’s spatial vulnerability is as important as its temporal vulnerability.

The dual characteristics of drought events have been addressed in a number of literature

sources (e.g. Downing and Bakker 2000; Hewitt 2014; Jain et al. 2015; Pandey et al. 2010;

Tánago et al. 2016; Wilhelmi and Wilhite 2002). For the case of the Australian continent

that is highly stressed due to drought events, there is a dire need for an improved and easily

implemented spatio-temporal approach for drought vulnerability and risk assessments.

Drought risk management involves three primary activities: (1) identification of the risk

and the assessment of its significance, (2) development of new methods and utilisation of

available resources to minimise or mitigate the drought risk and (3) development of new

strategies to manage the drought risk. The difficulty, however, in enforcing any of these

perspectives is the subjectivity in the measurement of regional drought vulnerability that is

usually quantified as a relative measure (Downing and Bakker 2000). The challenges with

vulnerability mapping and assessment are an ongoing issue because vulnerability levels are

dynamic, and they are moderated due to changes in land use, population density,
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technology, farming practices and climate variability. Therefore, mitigating the regional

drought impacts could involve some level of subjectivity in the assessment as there are no

standard criteria on mapping drought vulnerability, hence to quantify drought risk. How-

ever, to minimise the subjectivity in the vulnerability assessment, the application of fuzzy

logic theory in geospatial information system (GIS) for natural hazard mapping is

instrumental in the design of efficient tools for spatial decision-making (Aksoy and

Ercanoglu 2012; Al-Abadi et al. 2017; Espada Jr et al. 2012; Jun et al. 2013; Karabegovic

et al. 2006; Liu and Lai 2009; Tangestani 2003; Wu et al. 2013).

Introduced by Zadeh (1965), the fuzzy set theory embraces the membership function to

operate on a range of numbers (0, 1), reflecting the degree of certainty of membership

(Pradhan 2011) instead of using the crisp sets that only allow values of either 0 or 1 as

levels of truth (Jun et al. 2013). It is an alternative logical foundation that comes from

artificial intelligence technology with several useful implications for geospatial modelling.

The idea of using fuzzy logic in natural hazard mapping is to consider spatial objects on a

map as members of a set wherein the unconstrained (subjective judgement) fuzzy mem-

bership values must lie on (0, 1) range rather than being measured over discrete intervals.

For complex problems such as drought risk assessment, fuzzy logic tool is attractive

because it is easy to understand and implement, allows flexibility of combining several

map layers, can be readily implemented in GIS (Pradhan 2011) and manipulates spatial

objects of different measurement units into standardised values between 0 and 1 (Espada Jr

et al. 2012). Fuzzy logic has been used for landslide and flood risk mapping, assessing

water-harvesting zones, multi-hazard impact assessment flood disaster validation and

decision support for environmental impact assessment, among the others (Aksoy and

Ercanoglu 2012; Al-Abadi et al. 2017; Araya-Muñoz et al. 2017; Espada Jr et al.

2012, 2013; Jun et al. 2013; Karabegovic et al. 2006; Tangestani 2003). Therefore, the

application in other environmental sectors of hazard and risk assessment is a motivation to

apply fuzzy logic tool for drought risk assessment, considering south-east Queensland,

Australia as a study region.

Developing a comprehensive set of metrics for drought assessment is challenging due to

the dynamic nature of environmental and socio-economic factors (Hinkel 2011). In many

previous drought vulnerability assessment studies, the indicating variables were mainly

aggregated with deductive approach (e.g. expert judgement) or by normative approach

(e.g. equal weighting). Consequently, the delivery of robust results is an issue due to

subjective judgements in the former approach and the multi-dimensionality of variables to

different stakeholders in the latter approach (Hinkel 2011). Assigning equal weights to

factors or through expert judgement based on experience leaves room for errors. To cir-

cumvent the issue of multi-dimensionality in the normative argument of equal weights, the

Bayesian joint conditional probability of each indicating variable for the weighted overlay

operations is recommended.

Since vulnerability assessment is a relative measure due to its region-specific nature,

drought analysts must define the critical levels (Downing and Bakker 2000). There are

numerous factors that influence drought vulnerability (Price et al. 2011) and their inclusion

may depend on available data. Undeniably, drought vulnerability has a close correlation

with man-made infrastructure and socio-economic conditions (Wilhelmi and Wilhite

2002). According to the literature, studies performed outside of Australia has included

various climatic and physiographic factors to produce integrated maps of vulnerability, e.g.

(Ekrami et al. 2016; Jain et al. 2015; Pandey et al. 2010; Safavi et al. 2014; Thomas et al.

2016; Wilhelmi and Wilhite 2002). Therefore, region-specific integrated physiographic,

climatic and social factors are essential for the assessment of drought vulnerability. This
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approach is yet to be applied in Australia, except for one study that used only two factors

(i.e. plant available water capacity and soil moisture level) to analyse drought vulnerability

and risk in rain-fed agriculture across Australia (Stone and Potgieter 2008).

Considering the need for a spatially relevant drought risk mapping for the drought-prone

SEQ region, the purpose of this study is to apply fuzzy logic tool to generate drought

hazard, exposure and vulnerability indices using multiple physiographic and climatic

factors where the indices are then overlayed to generate a risk map. The aim is to develop a

model for assessing drought risk that is expected to improve rationality and accuracy of

results. The drought risk map can be used as a framework for a timely implementation of

mitigation measures and effective monitoring system. The specific objectives are to: (1)

identify available spatial and temporal physiographic and climatic factors relevant for the

region; (2) estimate probable weights of each factor conditional on rainfall departure using

Bayesian theorem; (3) standardise factors using fuzzy membership functions and generate

vulnerability, exposure and hazard indices maps; and (4) produce integrated drought risk

map using fuzzy overlay operation available in ArcGIS 10.5.

2 Theoretical overviews

2.1 Concept of vulnerability, exposure and risk

The risk is a product (or sum) of hazard, vulnerability and/or exposure. According to

Downing and Bakker (2000), the risk can be expressed mathematically as:

Risk ¼ Hazard � Vulnerability � Exposure ð1Þ

Risk ¼ Hazard þ Vulnerability ð2Þ

IPCC (2012) defines hazard as ‘‘the potential occurrence of a natural or human-induced

physical event that may cause loss of life, injury, or other health impacts, as well as

damage and loss to property, infrastructure, livelihoods, service provision, and environ-

mental resources’’. The risk is defined as ‘‘the likelihood over a specified time period of

severe alterations in normal functioning of a community or a society due to hazardous

physical events interacting with vulnerable social conditions, leading to widespread

adverse human, material, economic, or environmental effects that require immediate

emergency response to satisfy critical human needs and that may require external support

for recovery’’ (IPCC 2012). The term vulnerability has numerous definitions. Since vul-

nerability usually bounds by context, a specific definition is difficult to justify. In response

to hazard-centric perception of disasters in 1970s, the term vulnerability was introduced to

describe the extent to which people suffer from calamities and socio-economic circum-

stances to cope with (Schneiderbauer and Ehrlich 2004). Geoscience Australia (2010a)

conceptualised vulnerability as the impact a hazard has on the people, infrastructure and

the economy. Lastly, exposure is defined in terms of the assets such as ‘‘people, property,

systems or other elements present in hazard zones that are thereby subject to potential

losses’’ (ISDR 2009).
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2.2 Fuzzy logic approach

The fuzzy logic is an approach that computes the ‘‘degree of truth’’ instead of absolute

terms ‘‘true or false’’ (i.e. 1 or 0) Boolean logic (Zadeh 1968, 1975). Fuzzy theory

embraces the membership function (or the true and false) to operate over a range of

numbers between 0 and 1, reflecting the degree of certainty of the membership (Pradhan

2011). It includes 0 and 1 as the extreme cases of truth but also various states in between,

i.e. fuzzy logic permits partial membership mathematically given as:

lA xð Þ : X ! 0; 1½ � ð3Þ

In Eq. (3), lA xð Þ refers to the grade of membership for element x in a fuzzy set A, and

the X is the universal set defined in specific problem.

To build a fuzzy logic-based model, a careful selection must be made for the appro-

priate membership function. In context of the present study, the fuzzy membership func-

tions transform the input raster onto a 0–1 scale based on a specified fuzzification

algorithm. A value of 1 indicates full membership in a fuzzy set, while membership

decreasing to a value of 0 indicates it is not a member of the fuzzy set. In this study, three

membership algorithms, LINEAR, LARGE and SMALL, are used.

In the LARGE fuzzy membership, the larger inputs have membership values closer to 1

and the function is defined by a user-specified midpoint value that is assigned a mem-

bership value of 0.5. The mathematical expression of LARGE fuzzy membership function

is given as (Tsoukalas and Uhrig 1996):

l xð Þ ¼ 1

1 þ x
f2

� ��f1
ð4Þ

In Eq. (4), f1 is the spread and f2 is the midpoint. The fuzzy LARGE function is useful

when large input values have higher membership where the input values can be either an

integer or floating point positive values.

The fuzzy SMALL defines membership function with smaller input values having a

membership value closer to 1. Mathematical expression for fuzzy SMALL function is

given as:

l xð Þ ¼ 1

1 þ x
f2

� �f1 ð5Þ

The fuzzy SMALL function is useful when small input values have higher membership.

The fuzzy LINEAR membership function applies a linear function between the user-

specified minimum and maximum values. Anything below the minimum will be assigned a

0 (definitely not a member) and anything above the maximum a 1 (definitely a member).

After input variable standardisation, the fuzzy overlay operation is performed. There are

five different fuzzy overlay types: AND, OR, PRODUCT, SUM and GAMMA in ArcGIS

10.5, where the user can choose the overlay type to suit the purpose of their study. This

study used GAMMA overlay that uses the algebraic product of the ‘‘increasive’’ fuzzy

SUM and ‘‘decreasive’’ fuzzy PRODUCT effects, both raised to the power of gamma. The

fuzzy GAMMA overlay operation is chosen to avoid bias on which risk equation (Eqs. 1–

2) to be used in the assessment (Espada Jr et al. 2012, 2013) where the mathematical

expression of fuzzy GAMMA is (Tangestani 2003):
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lgamma ¼ lsumð Þc� lproduct

� �1�c ð6Þ

where lgamma is the calculated fuzzy membership function, c is a parameter chosen

between 0 and 1; lsum is the fuzzy algebraic SUM and lproduct is the fuzzy algebraic

PRODUCT that is mathematically expressed as:

lsum ¼ 1 �
Yn
i¼1

1 � lið Þ andlproduct ¼ 1 �
Yn
i¼1

lið Þ ð7Þ

where li is the fuzzy membership for the ith map, and i = 1, 2, …, n maps to be combined.

In the fuzzy GAMMA operation, c ¼ 0 is equivalent to the fuzzy algebraic PRODUCT and

c ¼ 1 is equivalent to fuzzy algebraic SUM. The judicious choice of the gamma value

depends on the user in order to ensure a flexible compromise between the ‘‘decreasive’’ and

‘‘increasive’’ tendencies of fuzzy PRODUCT and fuzzy SUM, respectively. This study uses

the default gamma value of 0.9, consistent with Espada Jr et al. (2013) that also used fuzzy

GAMMA overlay for developing flood risk maps for Brisbane city area.

3 Materials and method

To produce an integrated drought risk map for the SEQ study region, various layers

representing spatial maps of different factors are prepared using ArcGIS software. Spatial

maps representing vulnerability, exposure and hazard per unit area are prepared on a grid

system of 100 9 100 m. Spatial information on the above maps is categorised in sub-

classes in respect of their degree of significance in vulnerability to drought to obtain

probable weight of a factor conditional on the hazard.

3.1 Study area

The study area is located in the south-east Queensland (SEQ) region, Australia. It covers an

area of 123,897.53 square kilometres. Rural areas make up about 85% of SEQ, much of

which is managed by farmers. Grazing takes up major portion of the land use (&51%).

Other intensive agricultural activities include horticulture and animal production. For

sustainable agriculture, key challenges in SEQ region include climate change, water

supply, population growth and economic pressures. The projected impact of climate

change directly affecting agriculture includes more frequent and severe droughts (Pearce

et al. 2007). As such, the agricultural production will require more water efficient practices

due to increasing demand for water when supply becomes less reliable under drought

conditions. The study area covers six catchments: Condamine–Balonne, Moonie, Border

Rivers, Logan, Gold Coast and Moreton. The topography of the study area varies between

14.74 m below sea level to 1360.24 m high. The higher elevations exist on the Great

Dividing Range that is Australia’s most substantial mountain range and the third longest

land-based range in the world. The high elevated terrains have high slopes as well. The

climatic conditions vary on either side of the Great Dividing Range (Chiew and McMahon

2002).
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3.2 Identification and significance of factors

Drought is driven by precipitation deficiency in space and time, while the severity of

drought depends on numerous factors. Drought risk to agriculture can be viewed as a

product of exposure to the climatic hazard and vulnerability to cropping practices to

drought conditions (Wilhelmi and Wilhite 2002). To assess regions with high risk of

droughts from integrated drought risk map, drought vulnerability, exposure and hazard

factors need to be identified. While there are various, yet no certain fixed factors, previous

investigations elsewhere have shown a number of static and semi-static physiographic and

dynamic climatic factors that are closely associated with drought conditions. The most

common yet immediate associations with droughts are slope, soil type, elevation, plant

available water capacity (PAWC), soil depth, land use and population density. The rainfall

deficiency is considered as the drought hazard.

Rainfall The best and most common single measure of water availability in Australia is

the rainfall (ABS 2012). The rainfall deficiency is the primary factor responsible for

occurrence of drought as it is the cause of subsequent soil moisture shortage for crops (Jain

et al. 2015). In this study, the rainfall departure (RD) from normal (i.e. normal ffi base

period from 1971 to 2000) is considered as the hazard index. The year 2007 was one of the

driest years, and the spring season (September–October–November; SON) was the driest

season in 2007 during the Millennium Drought. The formula for calculating RD is given

as:

RD %ð Þ ¼ xi � �xi
�xi

� 100 ð8Þ

where xi = rainfall for the given month, season or year and �xi = average rainfall for the

month, season or year over the base period 1971–2010 (Deo et al. 2009).

In SON 2007 season, * 12.70% of the study region had RD B - 75%, * 12.41% of

the study region had - 75%\RD\ - 50%, * 13.08% of the study region had

- 50%\RD\ -25 %, and * 11.12% of the study region had - 25%\RD\ 0%.

In other words, a total of * 49.31% of the study region was under rainfall deficient state in

the spring season of year 2007. We based the numerical weighting of RD subclasses

according to Jain et al. (2015) and Safavi et al. (2014). Similarly, rainfall departure for

autumn (March–April–May; MAM) and summer (December–January–February; DJF)

seasons of 2007 and annual, i.e. 2007, 2009 and 2013 drought years, is estimated, and

Table 1 enumerates the extreme values in the study region.

Figure 1 shows an example of annual (1960–2013) and seasonal (2000–2013) per cent

rainfall departure for a point location in the study region, i.e. for Brisbane (153.03�E,

Table 1 The maximum and minimum values of rainfall departure from the base period during the drought
years in the present study region. (DJF December–January–February, MAM March–April–May,
SON September–October–November, JJA June–July–August)

Rainfall departure Drought season (2007) Drought year

DJF (%) MAM (%) SON (%) 2007 (%) 2009 (%) 2013 (%)

Maximum 225.26 466.34 378.56 19.50 27.74 41.08

Minimum - 73.18 - 100.00 - 100.00 - 41.71 - 49.47 - 62.51

Nat Hazards (2018) 93:823–847 829

123



www.manaraa.com

27.47�S). The seasonal rainfall departure has been mostly negatives as well during this

Millennium Drought period.

Soil In seasonally dry and semi-arid tropics and subtropics, the low and erratic rainfall

puts a major constraint on rain-fed agriculture. In these areas, soil moisture is crucially

important for fullest expression of the production potential of plants over time. It is

important, however, to note that irregular and an insufficient amount of rainfall is not the

only cause of lack of moisture in the soil. For instance, the water-holding capacity of the

soil depends on the soil porosity, which in turn depends on the soil texture. The soil texture

is important because it influences the amount of water soil can hold, the rate of water

movement through the soil and how workable the soil is for growing plants (FAO 2005). In

SEQ region, soil texture varies from clay, loam, silt and sand. The clay soil generally holds

more water while the sandy soil is well aerated but does not hold much water, i.e. it has

high water infiltration rate. Therefore, sandy soils are most vulnerable to drought due to its

least moisture holding capacity.

This study utilised the sandy soil data for the year 2014, sourced from the Terrestrial

Ecosystem Research Network (TERN) (TERN 2009). Sand data are estimated in per-

centages by taking 20 lm-2 mm mass fraction of the\ 2 mm soil material determined

using the pipette method. The sand digital maps are available at six defined depth intervals:

0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm and 100–200 cm. In this study, the

values for all depth levels were averaged to obtain a single layer map of sand. Figure 3

Fig. 1 Climatological conditions for the study region (Brisbane, 153.03�E, 27.47�S). a Annual rainfall
departure (expressed as a percentage) over 1960–2013. b Seasonal rainfall departure (expressed as a
percentage) over Millennium Drought

830 Nat Hazards (2018) 93:823–847
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shows the spatial distribution of the sand percentages. Much of the low sand percentage is

found at the higher elevation area.

Soil depth Soil depth refers to the thickness of the soil materials that provide structural

support, nutrients and water for plants (Scherer et al. 2013). The greater the depth of the

soil, the higher the soils capacity to store and supply moisture to plants for growth.

Therefore, greater soil depths are considered less vulnerable to droughts. Shallow depths

mean less water storage by the soil; hence, it is more vulnerable to droughts. The soil depth

data were obtained from TERN for the year 2014. The depth of soil on a geospatial map is

shown in Fig. 3.

Slope The slope that measures the inclination of the land surface from the horizontal is

another important drought vulnerability factor. The water runoff is considerably higher on

steeper terrain compared to the near ground surface. Therefore, the terrain areas with lesser

slopes are relatively less vulnerable to droughts compared to hilly plains (Jain et al. 2015).

The slope data (in percentages) were obtained from TERN for the year 2000. The spatial

distribution of the slope percentage is shown in Fig. 3.

Plant available water capacity (PAWC) The PAWC refers to the difference in water

content between field capacity and permanent wilting point of plants. Stone and Potgieter

(2008), following the work of Wilhelmi et al. (2002), provided a compelling argument on

the importance of PAWC for the Australian droughts. In their study, Stone and Potgieter

(2008) developed initial indications of PAWC based on the knowledge of local specialists,

agronomists and rural extension officers working ‘‘in the field’’. It was found that many

parts of eastern Australia had relatively low levels of PAWC (e.g. 75–100 mm) that,

potentially, increased the vulnerability to drought risk. To be consistent with the scales

used in their study, we used the similar effective index-scale of PAWC shown in Table 2.

The PAWC data were obtained from the National Agricultural Monitoring system (NAMS;

http://www.nams.gov.au). The PAWC spatial distribution is shown in Fig. 3.

Elevation Water availability also greatly depends on the elevation of the plain. The

digital elevation model (DEM) describes landforms and ground surface topography is

crucial for addressing issues relating to the impacts of climate change, disaster manage-

ment, water security and environmental management. The 3-second DEM data for the year

2000 were obtained from Queensland Spatial Catalogue–QSpatial. The elevation corre-

sponds well with the per cent slope where higher elevation has higher slopes and vice

versa. For instance, the elevation less than 500 m has slope less than 5%. In Fig. 3, the high

elevations are where the Great Diving Range is, while the area closer to the coast is mostly

low-elevated zone.

Land use The drought vulnerability can be regarded in a dynamic sense as a result of

land use and management, including government farm practices and societal factors

(Nelson et al. 2005). Land use is one of the most important factors influencing vulnerability

to drought. In this study, it is considered as an exposure factor because of its dynamic

nature. The land use data was obtained from the Queensland Land use Mapping Program

(QLUMP) for the year 2016, available at QSpatial data portal. Land use in the study region

is dominated by pasture/grassland (about 63.8%) followed by agriculture (20.3%), pro-

duction forestry (7.4%), nature conservation (4.3%), urban use (3.1%) and water body

(1.1%), as shown in Fig. 3. Among the six listed land use types, it is implicit that agri-

culture (urban use) becomes the first (second) sufferer due to water deficiency and drought

compared to other land uses because of their dependency on water for survival. Therefore,

agriculture subclass is given the highest numerical weight value because it was considered

as relatively more vulnerable to drought. In contrast, the nature conservation encompasses

rare socio-economic activities and is therefore assigned less weight as it is considered less

Nat Hazards (2018) 93:823–847 831
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Table 2 Numerical weights assigned to the subclasses of drought vulnerability, drought exposure and
drought hazard factors

Factors Assumption Classification of drought
vulnerability factors

Weights
assigned

Land use The classified land use after
numerical weight assignment is
directly related to the degree of
vulnerability. The subclass with
higher numerical weight is more
vulnerable to drought, and vice
versa

Fuzzy LARGE

Water body
Nature conservation
Production forestry
Pasture/grassland
Urban use
Agriculture

- 100 (masking)
2
4
6
8
10

Soil texture–
sand

Sand: directly related to the degree
of vulnerability. The higher the
percentage of sand means higher
degree of vulnerability

Fuzzy LARGE

\ 50%
[ 50%

5
10

Slope (%) Directly related to the degree of
vulnerability. The higher the
percentage of slope means
higher degree of vulnerability

Fuzzy LARGE

0–2
2–5
5–8
8–12
[ 12

2
4
6
8
10

Population
density (per
km2)

Directly related to the degree of
vulnerability. The higher the
number of people living in a
square kilometre grid, the higher
the degree of vulnerability

Fuzzy LINEAR

0–1000
1000–2000
2000–3000
3000–4000
C 4000

2
4
6
8
10

Soil depth (m) Inversely related to the degree of
vulnerability. The greater the
depth of soil, the less the degree
of vulnerability

Fuzzy SMALL

C 1
\ 1 to C 0.8
\ 0.8 to C 0.6
\ 0.6

1
3
6
9

Plant
available
water
capacity
(PAWC;
mm)

Inversely related to the degree of
vulnerability. The less amount of
PAWC, the higher the degree of
vulnerability

Fuzzy SMALL

C 175
150–175
100–150
75–100
B 75

- 100 (masking)
2
4
8
10

Elevation (m) Directly related to the degree of
vulnerability. The higher the
elevation, the higher the degree
of vulnerability

Fuzzy LARGE

[ 500
250–500
0–250
B 0

10
6
3
- 100 (masking)

Rainfall
departure
(%)

Inversely related to the degree of
vulnerability. The smaller the
rainfall departure index, the
higher the degree of
vulnerability

Fuzzy LINEAR › fuzzy SMALL

[- 10 (near normal ? surplus)
- 10 to - 15 (dry spell)
- 15 to - 25 (mild drought)
- 25 to - 35 (moderate drought)
- 35 to - 50 (severe drought)
\- 50 (extreme drought)

0
5
10
15
20
25
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sensitive to water shortages. The water bodies such as lakes, dams and reservoir are

assigned a negative value of -100 for masking as these areas are considered non-vul-

nerable to drought.

Population The water demand is also affected by the population density. In the areas

where population density is high, the water usage and demand are also high. Therefore,

areas with larger population density are considered relatively more vulnerable to drought

than areas with smaller population density. In this study, population density is categorised

as an exposure factor because as the population grows, the demand for water mounts and

pressure on finite water resources intensifies. The continuous growth of population density

will impact water availability in any given area; hence, the exposure to drought will

subsequently increase. The population density data were obtained from the Australian

Bureau of Statistics (ABS 2012) for the year 2011. Much of the study area has less than

1000 people to none per square grid; therefore, the exposure to drought is less in these

areas, as shown in Fig. 3. Conversely, the population density is relatively high in the south-

east study region that covers the populous Brisbane city and Gold Coast. This indicates that

high population density and high population growth rates in the SEQ region have high

chances to face water scarcity or water stress situations.

3.3 Proposed weighting scheme

To produce vulnerability, exposure and hazard indices map, a differential weighting

scheme based on relative importance of the factors is proposed. The weight assignment is

based on the assumption of relative degree of influence of a factor on overall vulnerability

to droughts. In the proposed scheme, the rainfall deficiency in terms of rainfall departure is

considered most influential factor and is therefore assigned highest weights ranging from 0

to 25 (Table 2). The weight value of 25 represents very extreme dryness that poses highest

risk to droughts. Comparatively, other factors are considered moderately influential to

drought vulnerability and are thus given weight assignment between 0 and 10, where a

value of 10 corresponds to the factor subclass being highly vulnerable to drought. For

instance, the water demand and availability tend to vary considerably with land use types

and since agriculture and urban use are the primary focus in this study, they are assigned

higher weights. Similarly, elevation, soil depth, sand soil type, plant available water

capacity and slope are divided in subclasses and assigned weights based on their relative

importance to drought vulnerability. The differential weights are then used to determine

the joint conditional probability based on Bayes theorem discussed next. It is important to

note that the weight assignment to the factor subclasses was only done to estimate the joint

conditional probability that showed the relevance of each factor conditional on the hazard.

3.4 Bayesian joint conditional probability

Normative argument is often used for assigning equal weights to indicating variables. In

the normative argument, the indicating variables are aggregated such that each dimension

is given equal importance in characterising the state of development. However, vulnera-

bility assessment is not a simple, straightforward exercise because multiple stakeholders

value the dimensions differently (Hinkel 2011). In the spatial dimension context, the

development of risk maps from indicating variables varies spatially. To address the multi-

dimensionality issue in the normative argument of equal weights, the Bayesian probability

is used in this study. The Bayesian joint conditional probable weights are calculated as:
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P DRijVið Þ ¼ Pmax DRi \ Við ÞP
nPmax DRi \ Við Þ andP DRijEið Þ ¼ Pmax DRi \ Eið ÞP

nPmax DRi \ Eið Þ ð9Þ

where DR is the drought risk represented by drought hazard as a priori event, V and E are

vulnerability and exposure indicating variables, respectively, i is the level of perceived

drought risk (vulnerability/exposure subclasses), Pmax is the maximum probability of an

indicating variable, and n is the number of indicating variables

The weight values are used in aggregating the vulnerability and exposure indicating

variables. Table 3 lists the probable importance of each factor to the rainfall departure

hazard index. It is important to note that no matter what month, season or year is con-

sidered for the analysis, these probability values do not change and it has been confirmed

from the computational analysis of all the seasons and years analysed.

Subsequently, the fuzzy-standardised vulnerability and exposure factors (fwj) are first

multiplied by 100 to obtain integer values, and then weighted overlay operation is per-

formed where weights are the per cent conditional probability values (Pj). The output is

then divided by 100 to obtain the eventual vulnerability and exposure index maps

(Vi or Ei) on 0 to 1 scale, as per Eq. 10.

Vi or Ei ¼
Xn
j¼1

Pj � 100 � fwj

� � !
=100 ð10Þ

3.5 Framework for derivation of drought risk map

A diagram of the input–process–output model that presents the flowchart of the study is

shown in Fig. 2. Under the input component, drought hazard (rainfall departure), vulner-

ability (soil type, soil depth, elevation, PAWC and slope) and exposure (population and

land use) were assessed with corresponding details and assumptions, enumerated in

Table 2. All inputs were continuous data except for land use that needed to be reclassified

and assigned weights based on the significance and influence on droughts. Under process

component, the inputs were standardised from original values into 0–1 scale, analysed and

processed using applicable GIS operations with emphasis on fuzzy logic operations on

ArcGIS 10.5. The standardised vulnerability and exposure factors were then evaluated

using Eq. 10. The procedure in turn produced initial outputs representing drought risk

component indices maps (i.e. hazard, vulnerability and exposure indices). The analytical

and processing operations using fuzzy GAMMA overlay led to generation of drought risk

map as the ultimate output. Figure 3 shows the original values of the vulnerability and

exposure factors in the left column, while the right column shows the corresponding

standardised factors based on respective fuzzy operations.

The hazard index consisted of the rainfall departure (%). Relative to the base period

(1971–2000), the seasonal and annual rainfall departure are used as the sole hazard indices.

To obtain the hazard index, the fuzzy LINEAR followed by fuzzy SMALL membership

function are applied to the rainfall departure. The fuzzy SMALL transformation function is

used when the smaller input values are more likely to be a member of the set, as in this

study the negative rainfall departure percentages corresponded to the drought condition,

hence the hazard in consideration. The midpoint of the rainfall departure identified the

crossover point (assigned a membership of 0.5) with values greater than the midpoint

having a lower possibility of being a member of the fuzzy set and vice versa. Accordingly,

the values closer to 1 in the standardised rainfall departure corresponded to high drought
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risk member. Seasonal and annual drought hazard indices are prepared, and the results for

seasonal (2007) and annual (2007, 2009 and 2013) are presented. These years are recent

drought years in the SEQ region. The 2007 and 2009 are part of the catastrophic Mil-

lennium Drought, while the 2013 drought occurred after the wet La Niña season

(2010–2011). Figure 4 shows the hazard indices maps for drought years 2009 and 2011.

The red colours correspond to high risk areas, i.e. rainfall departure below normal.

The vulnerability index consisted of integrated layer of soil depth, sand, PAWC, ele-

vation and slope. Guided by the assumptions in Table 2, the fuzzy LARGE or fuzzy

SMALL membership functions are applied to the indicators. With fuzzy SMALL mem-

bership function, the smaller original pixel values are assigned with higher fuzzy mem-

bership values (closer to 1) in the function to indicate higher vulnerability. Conversely, the

fuzzy LARGE membership function was applied whereby the larger original pixel values

were assigned with higher fuzzy membership values (closer to 1) in the function to indicate

higher vulnerability. Equation (10) was applied following the standardisation process. The

resulting map was the vulnerability index, as shown in Fig. 5.

Table 3 Probable weights
applied for the vulnerability and
exposure factors conditional on
rainfall departures based on the
Bayes theorem

Pmax Bayes conditional probability

Exposure factors

Land use 0.3590 0.3941

Population 0.5519 0.6059

Total Pmax 0.9109 1.0000

Vulnerability factors

DEM 0.3124 0.1634

PAWC 0.2525 0.1321

Sand 0.5158 0.2698

Slope 0.3392 0.1775

Soil depth 0.4916 0.2572

Total Pmax 1.9115 1.0000

Fig. 2 Conceptual flowchart of a three-layer input–process–output schematic model for drought risk
mapping adopted in the present study
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Fig. 3 The original drought vulnerability factors in absolute units (left) and the corresponding standardised
drought vulnerability factors (right) using the fuzzy membership functions bounded by [0, 1] utilised for the
construction of spatial drought vulnerability map
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The exposure index consisted of integrated layer of land use and population. The fuzzy

LARGE and fuzzy LINEAR membership functions are applied to land use and population,

respectively. The fuzzy LINEAR membership function is more appropriate to standardise

population density since the availability and demand for water resources vary with change

in population density over time; hence, there is a direct proportionality between water

demand and population density. The resulting exposure index is shown in Fig. 5.

Usually analyst has the choice of whether to defuzzify the output of the fuzzy system to

generate the crisp output or leave the output without modification, which is also

Fig. 3 continued
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appropriate. In this study the final output was defuzzified into five discrete intervals

according to the perceived level of drought risk: none, low, moderate, high and very high.

Defuzzification is a process in fuzzy synthetic evaluation that calculates the crisp value (i.e.

grade interval) of a fuzzy set (Sadiq et al. 2004). The grade intervals for this study were

obtained through geometric interval classification of the raster data fuzzy set. As a com-

promise method between equal interval and quantile (ESRI 2017), geometric intervals

were used to delineate classes based on natural groupings of fuzzy membership values.

This option tries to find a balance between highlighting the changes in the middle and the

extreme values.

Drought risk assessment methods are generally designed to characterise and understand

the system’s degree of risk to drought (e.g. low, moderate, high and very high). In GIS, this

is known as descriptive modelling that refers to characterisation of direct interactions of

system components to gain insight and understand the system processes (Berry 1996). This

study attempts to contribute a new knowledge by developing spatial analytical technique in

generating descriptive drought risk maps. Hence, it is suggested that this type of approach

can provide useful strategic information for decision-makers involved in drought risk

monitoring.

Fig. 4 The drought hazard index for the two selected study years (i.e. 2009 and 2013) defined by the
standardised rainfall departure from the normal period using the fuzzy LINEAR and fuzzy SMALL
membership functions

Fig. 5 a The drought exposure index comprised of factors defined by the land use and population density.
b The drought vulnerability index comprised of the sand, soil depth, slope, plant available water capacity
and digital elevation model
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3.6 Validation of the drought risk index

In order to validate the drought risk output maps, the ideal measure would be a field study

that can literally verify the areas subjected to certain level of risk. Since a field study was

beyond the scope of this paper, this study has undertaken the spatial correlation approach

using the band collection (Erdey-Heydorn 2008; Gergely et al. 2016), a spatial analyst tool

that provides statistics for the multi-variate analysis of a set of raster bands. The correlation

is given as:

Corri;j ¼
Covi;j

rirj
ð11Þ

Seasonal and annual drought risk maps were correlated with rainfall departures to

estimate the dependency between them. Since rainfall departure was a core hazard variable

in generating the drought risk maps, and to avoid such bias, the upper (0–0.2 m) and lower

(0.2–1.5 m) layers of soil moisture were used alternatively. It is noteworthy that the soil

moisture for our study region is obtained from Australian Water Availability Project

historical runs constructed from the WaterDyn hydrological model (Raupach et al.

2009, 2012). These data have been used for drought studies in the present region (Dayal

et al. 2017a, b). Validation of drought risk maps with soil moisture is appropriate since

moisture content is an important indicator of agricultural droughts and its memory con-

tributes to spatial and temporal variation of regional drought (Mpelasoka et al. 2008).

Subsequently, seasonal drought risk maps were correlated with the 3-month running mean

of soil moisture leading up to the following season.

4 Results and discussion

The resulting seasonal and annual maps of drought risk are obtained by application of

fuzzy GAMMA overlay operation in ArcGIS. Figures 6 and 7 show the seasonal and

annual drought risk maps, respectively, while Table 4 enumerates the percentage area of

the five risk classes: no risk, low risk, moderate risk, high risk and very high risk. The maps

show that the majority of the study area is at moderate to very high risk to drought. The

very high risk regions in the SON 2007 seasonal drought risk maps carry much higher

percentages compared to the annual drought risk maps. This could be due to the JJA season

rainfall offsetting the total accumulated rainfall in other seasons of the year 2007. In the

JJA season (map not presented here), the rainfall departure index is in the positives (i.e.

minimum of 34.69% and maximum of 1508.78% in the study region). This is why the 2007

annual drought risk map (Fig. 6d) has smaller percentage of high and very high risk

regions compared to separate DJF, MAM and SON seasons.

It is apparent that the regions’ drought risk levels coincide well with the corresponding

hazard indices where regions with high hazard index are also critically vulnerable to

drought. This is possibly due to hazard index values being assigned an entire probability

value of 1 in the GAMMA overlay operation, while the vulnerability and exposure factors

were multiplied by their probability values conditional on the hazard index. Overall, the

results indicate that regions receiving much less rainfall relative to the base period con-

sequently have greater drought-related negative impacts. Considering the temporally and

spatially varying factors, the simple yet effective methodology developed in this study will

help to identify regions vulnerable to droughts and can be greatly useful in better decision-
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making processes for drought mitigation and management. The descriptive vulnerability

and drought risk map are also intended for farmers who can make judicious decisions as to

which crop to plant based on the water availability.

The anthropogenic activities influence the level of risk associated with droughts. To

demonstrate this, another set of drought risk maps excluding exposure factors (land use and

population) are generated and presented in Fig. 8. The difference between Figs. 8 and 6

and 7 manifests the importance of exposure factors drought risk assessments. The

Fig. 6 Spatial drought risk map and its classification thresholds for the serious drought year (2007)
generated with vulnerability, hazard and exposure indices overlay by the fuzzy Gamma function.
a December–January–February (DJF) summer period. b March–April–May (MAM) autumn period.
c September–October–November (SON) spring period. d Annual map. Note: Drought year was selected
according to Fig. 1

Fig. 7 Spatial drought risk map and its classification thresholds for moderate drought year (2009) and non-
drought year (2013) generated with vulnerability, hazard and exposure indices overlay by the fuzzy gamma
function. Note: Drought year was selected according to Fig. 1
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difference is more apparent in the low to no risk regions where inclusion of exposure

factors has increased the level of risk to moderate. This result shows that assessment of

drought risk must account for human factors to benefit from appropriate decision-making

and mitigation procedures.

For verification of the drought risk maps, Table 5 shows the correlation matrix of

drought risk with rainfall departure and soil moisture. There is a high correlation of

drought risk with rainfall departure due to the latter being used as a hazard index in

producing the former. To avoid the bias, the upper (0–0.2 m depth) and lower (0.2–1.5 m

depth) layer soil moistures were also correlated with drought risk index. The upper layer

soil moisture is well correlated with both seasonal and annual droughts, while the lower

layer soil moisture tends to show higher correlation in JJA and SON seasons of 2007, as

well as for 2009 and 2013 annual drought periods. For the case of seasonal droughts

(Table 5a), the correlation remains high for 3-month running mean soil moisture values

leading up to the next season. Therefore, despite the field study verification of the drought

risk maps, the correlations with soil moisture reveal the effectiveness of the drought risk

output maps, which therefore validates the drought risk index to be adopted for drought

management purposes.

Assessment of drought risk and vulnerability in this study has largely reinforced the

initial concept of Wilhite (2000), and several other studies on vulnerability assessment

elsewhere (e.g. (Jain et al. 2015; Pandey et al. 2010; Thomas et al. 2016; Wilhelmi and

Wilhite 2002)) but it does extend the only study performed in Australia (Stone and Pot-

gieter 2008). Our study shows that drought risk must be viewed as a product (and sum) of

exposure to climatic hazard and the underlying vulnerability of economic, demographic

and agricultural practices including physiographic features. Droughts occur in virtually all

climatic regimes, i.e. in both high and low-precipitation areas where aridity is considered a

normal feature (Wilhite 2009). This makes droughts to be considered as a relative phe-

nomenon, and therefore, the risk to drought must be addressed as a relative measure

(Downing and Bakker 2000). In consequence, it is difficult to reach standard criteria for

drought risk assessment. The overlay of several factors based on regional conditions

Table 4 Per cent area falling under various vulnerability classes

Vulnerability
class

Discrete
interval

Area
(%)

Discrete
interval

Area
(%)

Discrete
interval

Area
(%)

Seasonal DJF 2007 MAM 2007 SON 2007

None 0.14–0.51 0.10 0.14–0.49 0.04 0.12–0.50 0.01

Low 0.51–0.69 0.22 0.49–0.68 0.23 0.50–0.69 0.07

Moderate 0.69–0.78 0.26 0.68–0.77 0.24 0.69–0.78 0.26

High 0.78–0.82 0.27 0.77–0.83 0.32 0.78–0.83 0.41

Very high 0.82–0.91 0.15 0.83–0.93 0.17 0.83–0.92 0.25

Annual 2007 2009 2013

None 0.11–0.35 0.01 0.13–0.50 0.10 0.11–0.50 0.24

Low 0.35–0.54 0.28 0.50–0.68 0.21 0.50–0.68 0.34

Moderate 0.54–0.68 0.34 0.68–0.77 0.26 0.68–0.76 0.13

High 0.68–0.79 0.23 0.77–0.81 0.20 0.76–0.80 0.14

Very high 0.79–0.93 0.14 0.81–0.90 0.24 0.80–0.89 0.15
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therefore establishes a relative criterion that makes the drought risk assessment feasible. A

further refinement on the subclassification of factors may also be required given the nature

of the regional climate. This study has attempted to present a methodology that can be used

to assess drought vulnerability and risk in any given area.

The selection of vulnerability, exposure and hazard factors can be arbitrarily executed

(Araya-Muñoz et al. 2017; Hinkel 2011; Luers et al. 2003). In this study, we selected

drought associated physiographic and climatic factors based on current knowledge of the

drought hazard as well as on the availability of reliable and most recent data. We assumed

that this would explain the regions with high risk to drought; however, the results could

change as knowledge on the subject expands and more data become available. There are,

however, several other factors that could be considered in the drought risk analysis. For

instance, Thomas et al. (2016) used soil moisture availability, Pandey et al. (2010) used

ground and surface water availability, Ekrami et al. (2016) used evaporation, and Jain et al.

(2015) used soil moisture deficit index for their study regions. These factors were a

limitation to our entire study region and their inclusion could be possible if the analysis is

Fig. 8 Spatial drought risk map and its classification thresholds for seasonal (2007) and annual (2007, 2009
and 2013) generated with only vulnerability and hazard indices overlay by the Fuzzy Gamma function
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Table 5 Validation of drought risk index in terms of the correlation matrix of seasonal (a) and annual
(b) drought risk index with rainfall departure (RD) and the upper and lower layer soil moisture (SM) within
the drought study region and different periods

Soil
moisture

DJF 2007 MAM 2007 JJA 2007 SON 2007
Correlation matrix Correlation matrix Correlation matrix Correlation matrix

Drought
risk

Drought
risk

Drought
risk

Drought
risk

Drought
risk

1.0000 Drought
risk

1.0000 Drought
risk

1.0000 Drought
risk

1.0000

(a)

RD (%) - 0.8555 RD (%) - 0.8623 RD (%) - 0.8665 RD (%) - 0.5543

Upper
SM

DJF - 0.3808 MAM - 0.4486 JJA - 0.6800 SON - 0.2748

Lower
SM

DJF 0.0450 MAM 0.1348 JJA - 0.2266 SON - 0.2987

Upper
SM

JFM - 0.1064 AMJ - 0.3312 JAS - 0.5499 OND - 0.0092

Lower
SM

JFM 0.0402 AMJ 0.0901 JAS - 0.2880 OND - 0.2211

Upper
SM

FMA - 0.0937 MJJ - 0.3546 ASO - 0.4437 NDJ - 0.1957

Lower
SM

FMA 0.0486 MJJ 0.0071 ASO - 0.2910 NDJ - 0.1903

Upper
SM

MAM - 0.0538 JJA - 0.3515 SON - 0.2394 DJF - 0.3530

Lower
SM

MAM 0.0576 JJA - 0.0627 SON - 0.2559 DJF - 0.1915

Layer Layer statistics Correlation matrix

MIN MAX MEAN STD Drought risk

(b)

2007

Drought risk 0.1108 0.9273 0.6265 0.1328 1.0000

RD (%) - 41.7092 19.5005 - 11.9427 10.9399 - 0.8738

Upper layer SM 0.1346 0.4339 0.2177 0.0338 0.1039

Lower layer SM 0.0250 0.6432 0.1762 0.0847 0.0991

2009

Drought risk 0.1254 0.9031 0.7121 0.1310 1.0000

RD (%) - 49.4654 27.7423 - 21.3567 13.6609 - 0.8865

Upper layer SM 0.1059 0.5883 0.1976 0.0565 - 0.5520

Lower layer SM 0.0341 0.9024 0.3090 0.1534 - 0.4452

2013

Drought risk 0.1146 0.8870 0.6282 0.1511 1.0000

RD (%) - 62.5084 41.0766 - 12.4865 23.3613 - 0.8949

Upper layer SM 0.0864 0.5684 0.2092 0.0675 - 0.7302

Lower layer SM 0.1137 0.8815 0.3773 0.1429 - 0.5785
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carried out for the basins where these datasets are readily available. Future analyses could

also incorporate social factors such as diversity of local economies, people’s sources of

income, per cent of farms acquiring insurance. Data acquisition of the biophysical and

socio-economic factors was beyond the scope of this study, and authors recognise this

limitation. The spatial resolution of the indicators is also very important for mapping high-

resolution details. The hazard indicator, i.e. rainfall departure, was initially at a coarser

5 km � 5 km spatial resolution compared to other factors used in the analysis. The res-

olution of the hazard index used in this study is considered as a limitation because after

reducing the cell size to 100 m � 100 m, the several neighbouring pixels consequently had

similar rainfall value.

Application of fuzzy logic tool to develop the drought risk index is a novel contribution

of this study. Although the fuzzy logic theory (Zadeh 1965) has been out there for long

enough, its application on geospatial analysis has just made a breakthrough in recent years.

Fuzzy logic is an alternative logical foundation coming from artificial intelligence (AI)

technology with several useful implications for spatial data handling, where it accom-

modates the imprecision in information, human cognition, perception and thought (Kar-

abegovic et al. 2006). Accordingly, fuzzy logic is more suitable for dealing with real world

problems, because most human reasoning is imprecise. Major advantage of this fuzzy logic

theory is that it avoids the bias through subjective judgements and allows the natural

description, in linguistic terms, of problems that should be solved rather than in terms of

relationships between precise numerical values. With this advantage, fuzzy logic theory is

a widely applied in technique to deal with the complex systems in simple way. Therefore,

fuzzy logic appears to be instrumental in the design of efficient tools for spatial decision-

making, and its application for drought risk assessment in this study has shown it to be

excellent for designing efficient tools to support the spatial decision-making processes.

In spite of the significant merits and foresights provided by the spatio-temporal drought

risk mapping approach, the scope of this study has been limited to the computational

analysis only. To further validate the drought risk output maps, the actual field study is thus

required that creates an opportunity for future and more extensive independent work. It is

hoped that this study will seed better insights into the assessment of relative vulnerability

and exposure to droughts in SEQ region and is likely to assist decision-makers in better

planning, management and mitigation strategies. Fuzzy logic method has provided a good

estimate of agricultural drought risk due to its high correspondence with soil moisture on

spatial and temporal domain and therefore could be useful for the demarcation of areas

vulnerable to drought to facilitate proactive planning for coping with future drought events.

5 Conclusions

A descriptive drought vulnerability and drought risk assessment index has been accom-

plished by a new methodology that incorporates vulnerability, exposure and hazard factors

by integrating with fuzzy logic analytical tool in ArcGIS. Fuzzy logic approach was found

to be advantageous as it aimed to minimise the subjectivity in the drought risk assessment.

By choosing fuzzy GAMMA overlay, the different fuzzy overlay operations available in

ArcGIS allowed great flexibility in quantifying drought risk expressed in truth values that

range in degrees between 0 and 1. Given the significance of the approach and its ability for

spatio-temporal risk assessment, the results are likely to advance the application of ArcGIS
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for disaster risk reduction and in solving complex drought issues through adaptation

strategies.

The methodology developed in this study can be applied to support the existing drought

(or any disaster) risk reduction plans and policies prepared by any authorities, organisa-

tions, enterprises or any sectors involved in coordinating their development plans, resource

allocation and the implementation of their respective programme of activities. Given that

this study presented a new methodology for drought risk assessment, the coverage for the

entire nature and extent for drought risk is limited as there could be many more hydro-

meteorological, physiographic, environmental and social factors incorporated in the

analysis, provided the availability and reliability of the data. Therefore, some recom-

mended future work includes the following: inclusion of other factors in analysing drought

hazard (e.g. meteorological, hydrological and agricultural drought indices); review of the

technical characteristics of climate change and how it could affect drought risk assessment

process; and identification and field validation of the vulnerability, exposure, hazard and

drought risk indices including the quantity and quality of the data to be used as inputs in

the model. Such studies can employ our approach to yield useful pathways for water

resource management in a drought-prone region.
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